University PV Processes and Products Development Support

DOE Solar Energy Technologies Program

Wednesday, March 12, 2008

For Media Information, Contact: kevin.brosnahan@ee.doe.gov

For Technical Information, Contact: scott.stephens@ee.doe.gov

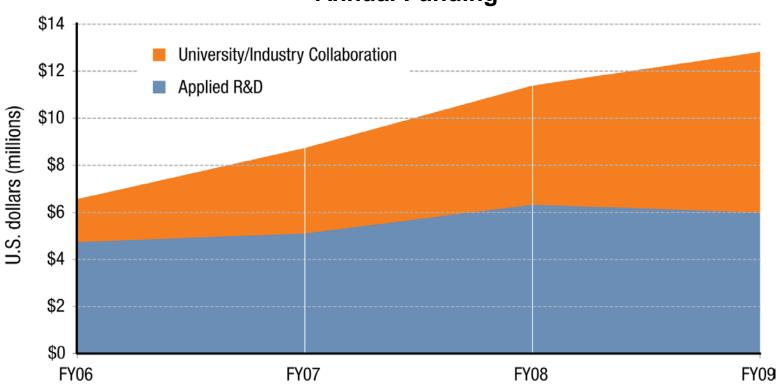
University Product and Process Development Objectives

Leverage universities' fundamental understanding of materials and photovoltaic (PV) devices

- Accelerate transition of PV technology from laboratory to marketplace.
- Help industry efficiently develop and optimize manufacturing processes.

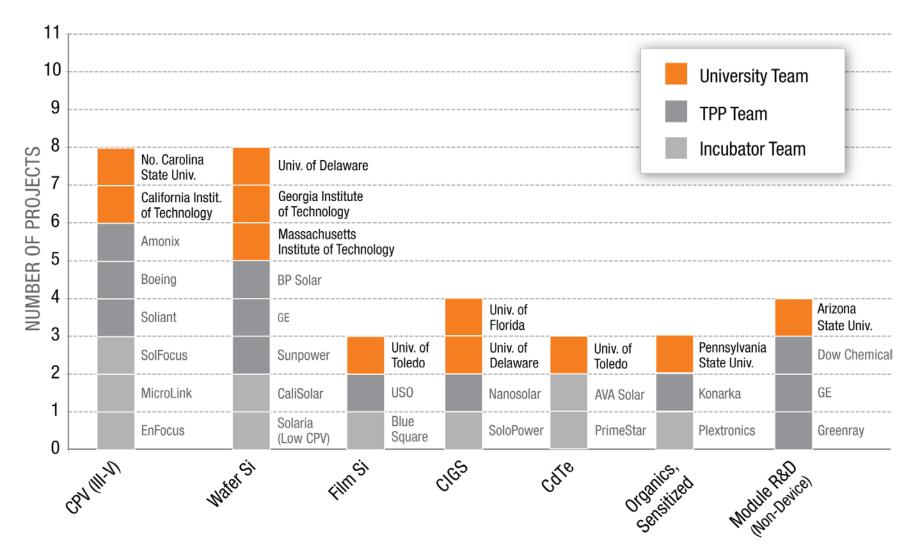
Strengthen university involvement in rapidly expanding PV industry

- Form direct project partnerships between leading U.S. companies and proven university research groups.
- Provide clear strategies to move products and processes into commercial production.


Expand the domestic PV R&D workforce

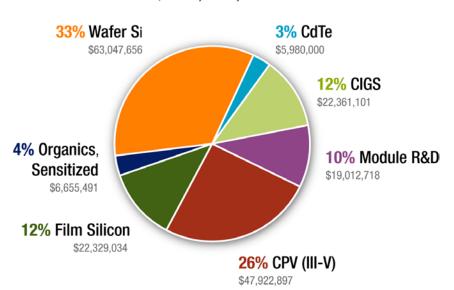
- Expose students to growing PV-related commercialization efforts.
- Supply industry with a stream of qualified scientists.

Since 2006, DOE has increased university collaboration with industry while maintaining commitment to longer term R&D projects.



Annual Funding

Distribution of projects across technology types.



University Product and Process Development funding remains aligned with current industry targeted programs.



- \$187,308,897 -

University Awards

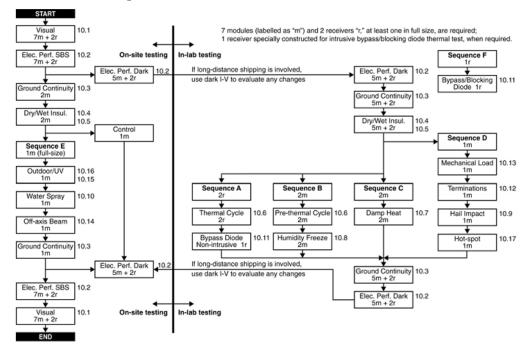
- \$13,683,678 -

Selected Projects: University PV Processes and Products Development Support

Arizona State University

Reliability Evaluation of Concentrator Photovoltaics per IEC Qualification Specifications

Technologies Addressed


Product qualification process for concentrating PV modules

Description

Reduce qualification bottlenecks such as environmental chamber testing while enhancing scheduling and coordination with industry to significantly increase testing throughput and efficiency.

Project Target

IEC testing costs and time reduced by as high as 65%

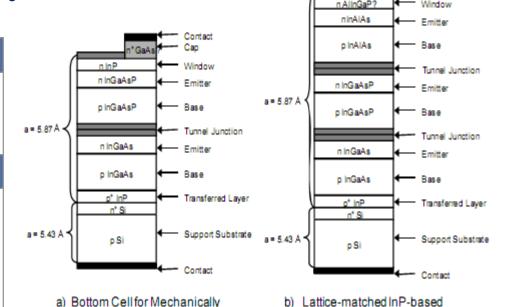
Resources (\$)		
Total Project	DOE Funds	Cost Share
\$785,304	\$625,304	\$160,000

California Institute of Technology

with Spectrolab, Inc.

100mm Engineered InP on Si Laminate Substrates

for InP based Multijunction Solar Cells


Technologies Addressed

Thin InP on inexpensive Si substrate for low cost multijunction cells

Description

Development 100 mm diameter InP/Si laminate substrates to enable development of a cost-effective, scaleable fabrication of InP based multijunction cell process, opening up a new design space for high-efficiency multijunction solar cells.

Target Efficiency	>40%
-------------------	------

Resources (\$)		
Total Project	DOE Funds	Cost Share
\$1,065,799	\$837,000	\$228,799

Stacked Multijunction Cell

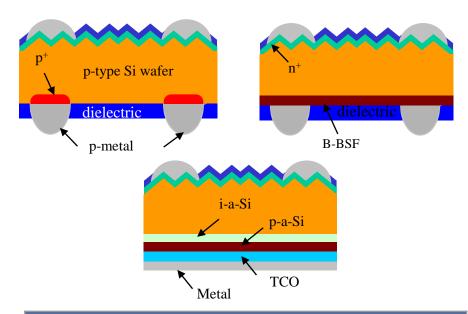
Dr. Harry Atwater

8

Triple Junction Cell

Georgia Institute of Technology

Rear Contact Technologies for Next Generation High-Efficiency Commercial Silicon Solar Cells


Technologies Addressed

Low cost monocrystalline and multicrystalline silicon solar cells

Description

Develop enhanced, cost-effective back surface passivation, light trapping, and inkjet printed back contacts, to yield a complete, low-cost, cell process which is ready for commercialization.

Target Efficiency	17-20%
-------------------	--------

Resources (\$)		
Total Project	DOE Funds	Cost Share
\$1,875,000	\$1,500,000	\$375,000

Massachusetts Institute of Technology with CaliSolar, Inc. and BP Solar International, Inc.

Defect Engineering, Cell Processing, and Modeling for High-Performance, Low-Cost Crystalline Silicon Photovoltaics

Technologies Addressed


Low-cost monocrystalline and multicrystalline silicon solar cells

Description

Close the efficiency gap between industrial multicrystalline and high-efficiency monocrystalline silicon cells, while preserving the cost advantage of low-cost, high-volume substrates.

Target Efficiency

18-22%, <\$1/W_p

Resources (\$)		
Total Project	DOE Funds	Cost Share
\$1,886,327	\$1,500,000	\$386,327

Dr. Tonio Buonassisi

North Carolina State University with Spectrolab, Inc.

Tunable Narrow Bandgap Absorbers for Ultra-High-Efficiency Multijunction Solar Cells

Technologies Addressed

High-efficiency 4-junction cells for CPV systems

Description

Develop and optimize a 1-1.5 eV, graded strain subcell and then integrate this layer into Spectrolab's triple junction device to produce a higher efficiency four junction solar cell.

Target Efficiency	45%
-------------------	-----

InGaP (AI)
$$E_g = 1.9 \text{ eV}$$

AlInGaAs $E_g = 1.5 \text{ eV}$

Proposed subcell $Eg = 1.5 - 1 \text{ eV}$

Ge $E_g = 0.67 \text{ eV}$

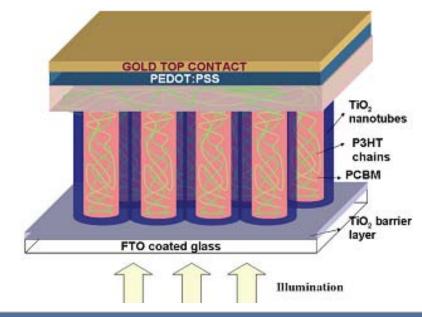
Resources (\$)		
Total Project	DOE Funds	Cost Share
\$1,434,420	\$1,147,468	\$ 286,952

Dr. Salah M. Bedair

Pennsylvania State University with Honeywell International, Inc.

Organic Semiconductor Heterojunction Solar Cells for Efficient, Low-Cost, Large-Area Scalable Solar Energy Conversion

Technologies Addressed


Organic cell with ordered TiO₂ nanotube arrays

Description

Use high surface area TiO₂ nanotube arrays in combination with electron and hole transporting organic semiconductors to fabricate inorganic-organic hybrid hetrojunction solar cells.

>7%

Target Efficiency	

Resources (\$)		
Total Project	DOE Funds	Cost Share
\$1,539,803	\$1,231,843	\$307,960

Dr. Craig Grimes

University of Delaware Institute of Energy Conversion with Dow Corning

Development of a Low-Cost Insulated Foil Substrate for CIGS Photovoltaics

Technologies Addressed

Insulating substrate for hightemperature CIGS deposition

Description

Develop a low-cost stainless steel flexible substrate coated with silicone-based resin dielectric and monolithic integration technology applicable across a variety of rollto-roll (R2R) CIGS manufacturing techniques.

Target Efficiency

R2R devices ≥ 12%

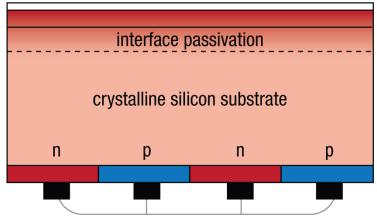
Resources (\$)		
Total Project	DOE Funds	Cost Share
\$1,848,024	\$1,478,331	\$369,693

Dr. Erten Eser

University of Delaware Institute of Energy Conversion with SunPower Corporation

High-Efficiency Back Contact Silicon Heterojunction Solar Cells

Technologies Addressed


High-efficiency back contact silicon solar cells

Description

Develop low-temperature passivation, low-cost metallization and low-cost cell structures to fabricate rear interdigitated back contact hetrojunction solar cells.

Target Efficiency >26%

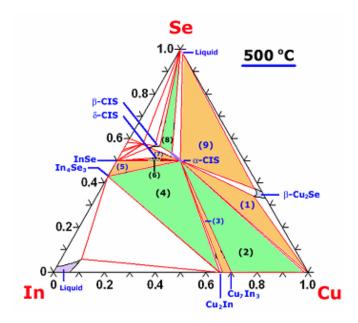
anti-reflection coating

interdigitated contacts

Resources (\$)		
Total Project	DOE Funds	Cost Share
\$1,870,903	\$1,494,736	\$376,167

University of Florida with Global Solar Energy Inc., International Solar Electric Technology Inc., Nanosolar Inc., Solyndra Inc.

Routes for Rapid Synthesis of CIGS Absorbers


Technologies Addressed

High-rate deposition CIGS

Description

Develop predictive models that quantitatively describe reaction pathways to synthesize CIGS which will reduce synthesis processing time and identify scaling issues for commercial manufacturing.

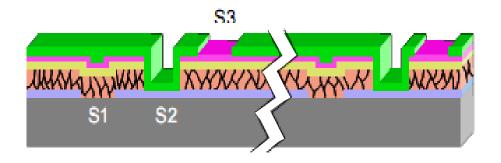
Project Target	CIGS synthesis	
rioject ranget	≤ 2 min	

Resources (\$)		
Total Project	DOE Funds	Cost Share
\$760,863	\$599,556	\$161,307

Dr. Tim Anderson

University of Toledo with Calyxo USA, Inc.

Improved Atmospheric Vapor Pressure Deposition to Produce Thin CdTe Absorber Layers


Technologies Addressed

Commercial CdTe modules

Description

Develop 10% efficient modules which utilize CdTe absorber layers approximately 1µm thick. Improvements to contacts, uniformity, and monolithic integration will also be achieved.

Target Efficiency 10%

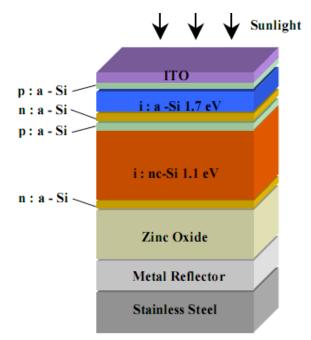
Figure 1: Three Scribe sequence shown for Calyxo USA monolithically integrated CdTe module.

Resources (\$)		
Total Project	DOE Funds	Cost Share
\$1,657,358	\$1,164,174	\$493,184

Dr. Robert W. Collins

University of Toledo with Xunlight Corporation

High Rate Fabrication of a-Si-Based Thin-Film Solar Cells Using Large Area VHF PECVD


Technologies Addressed

Amorphous silicon thin-film modules

Description

Develop uniform large-area (3 ft x 3 ft) VHF PECVD processes for fabrication of high-efficiency amorphous silicon and nanocrystalline silicon (nc-Si) solar cells at high rates.

Target Efficiency	10%

Resources (\$)		
Total Project	DOE Funds	Cost Share
\$1,895,798	\$1,442,266	\$453,532